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The validity of the normal distribution as an error model is commonly tested
with a (half) normal probability plot. Real data often contain outliers. The use of
t-distributions in a probability plot to model such data more realistically is
described. It is shown how a suitable value of the parameter v of the
t-distribution can be determined from the data. The results suggest that even
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1. Introduction

Abrahams & Keve (1971) introduced ‘probability plots’ as a tool in
crystallography to verify how the distribution of errors in any set of
observed values visually compares with a general presumed error
distribution. This is done by creating a scatter diagram of observed
versus theoretically expected deviations. In Abrahams & Keve
(1971), and in many subsequent papers using this technique, the
distribution that is used for the comparison is the Gaussian or
‘normal’ distribution, and the resulting probability plot is called a
‘normal probability plot’.

Unfortunately the uncertainties in many day-to-day observations
do not follow a normal distribution. Distributions encountered in real
experiments often have a much larger incidence of highly deviating
observations in the tails than predicted by the normal distribution.
The incidence of deviations of at least 100 following a normal
distribution is extremely low (8 x 107%*). These kinds of deviations,
however, are encountered in practice and will result in a normal
probability plot that shows an inverted S curve (Fig. 1).

The likelihood of outliers from a normal distribution is not only
very small, but also counter-intuitive. The incidence of deviations of
at least 110 is approximately 40 000 times less likely than deviations
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Figure 1

Normal probability plot of Bijvoet differences of a small-molecule crystal-structure
data set obtained using a point detector, showing curves due to non-normal
behavior of the errors. The diagonal straight line represents a least-squares fit; its
slope is larger than 1.0.

data that seem to be modeled well using a normal distribution can be better
modeled using a ¢-distribution.

of at least 100. This is completely contrary to experience: in practice it
is observed that once a measurement deviates wildly from expected
values, it does not make much difference by how much.

It follows that to describe real-world experiments a distribution
should be found that is more permissive of outliers. A good
candidate is Student’s t-distribution (Student, 1908). Originally, the
t-distribution was derived to describe statistical experiments where
the population variance must be estimated from a limited set of
observations. Over the years, the ¢-distribution has found much wider
applications than Student’s original intention, most notably in robust
statistical modeling of data (Lange et al., 1989). Based on this, we
propose to use it in a probability plot as well.

The #-distribution is modulated by a parameter v (v > 0, not
restricted to integer values). This parameter describes the number of
degrees of freedom in the statistical sample. For v = oo, the
t-distribution is equal to the normal distribution. For lower values like
v = 10, the central part of the distribution hardly differs from the
normal distribution, but the tails become very different (Fig. 2). At v
= 10, a deviation of at least 100 has a likelihood of 8 x 1077, and
deviations of at least 110 are only 2.4 times less likely than that.
Overall, lower values of v will result in distributions that are more
permissive of outliers. Experiments with different fixed values of v to
model real data have been reported in the literature (e.g. Yuh &
Hogg, 1988).
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Figure 2
Probability density function of a normal distribution and ¢-distributions with two
different values of v.
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In this paper we will detail how a probability plot can be based on
Student’s t-distribution. We suggest calling this a ‘t-probability plot’
or tPP. We will not derive the basis of the t-distribution nor validate
our use of this distribution for our goals.

2. Method

Because there is more complex mathematics involved when using the
Student’s t-distribution than when using the normal distribution, we
will explain each of the steps that are needed to use this distribution
in a probability plot. We will first describe the r-distributions and
compare them with the normal distribution. Along the way we will
derive what is needed to use any distribution as the basis for a
probability plot. After that, we will show how the v parameter can be
used.

2.1. Calculating probability functions

The most natural way to look at a distribution function is to
describe its probability density function (PDF). The PDF for the
normal distribution is

pdf,(z) = [1/(2m)/*] exp(—2*/2). 1)

Herein z is the variable of the so-called ‘standard normal’ distribution
with mean value of 0 and a standard deviation of 1, and it can be
obtained from any normal deviate x using the transformation

z=(x—p)/o. @
Herein p is the ‘correct’ or ‘expected’ value for x, which can be
approximated as (x) in the case of a homogeneous population.
Similarly, o is the expected standard uncertainty and can be
approximated by the square root of the population variance [(52)1/ 2]
in the case of a homogeneous population. The PDF for the
t-distribution is

pdf,(z [v) =

2\ —(D/2
v+ 1)/2] <1+z ) . 3)

T2\ v

In this formula I' constitutes the gamma function, a mathematical
extension of the factorial to real numbers."

To calculate a probability, the integral over the PDF for the
appropriate interval must be computed. The integral with lower
bound —oo is called the cumulative distribution function (CDF). The
integral of the PDF for any interval can be computed as the differ-
ence between two values of the CDFE. The CDF for the normal
distribution can be expressed by means of the error function:

erf(x) = (2/77%) [ exp(—£) dt. (@)
0

The error function and the complementary error function (‘erfc’) are
often used and are included in many standard mathematical libraries.
The CDF for the normal distribution is given as

cdf, (z) = (1/2)[1 + erf(z/2'?)], ®)
but is more conveniently calculated (especially for z < 0) as
cdf, (z) = (1/2)[erfe(—z/2"?)]. ©)

The CDF for the t-distribution is

! Fortran code implementing all functions described in this section can be
obtained from Netlib, http://www.netlib.org/random/dcdflib.f.tar.gz. Equiva-
lent python code is available from the IUCr electronic archives (Reference:
ZM5057). Services for accessing the code are described at the back of the
journal.

™

cdf,(z|v) = % +xr<v + 1) CFi[1/2,(v+1)/2;3/2; —zz/v].

2 ()2 T (v/2)

In this equation, , F; is the hypergeometric function (e.g. Abramowitz
& Stegun, 1972; Wikipedia, 2009)

To be able to use a probability distribution in a probability plot, it
is necessary to calculate the value of z that corresponds to a known
value of the CDF. The function required to perform this calculation is
called the inverse CDF (cdf™'). The inverse CDF of the normal
distribution cannot be written in closed functional form, but is readily
available as an approximated function with sufficient accuracy in
libraries for many programming languages. Unfortunately, the
situation with the ¢-distribution is not so easy, especially since there
are infinitely many ¢-distributions for different values of v. The only
practical approach is to implement the inverse CDF of the
t-distribution as an iterated (binary) search using the CDF.

The inverse CDF is defined for values between 0 and 1. The values
Py -..py for the horizontal (expected) axis of the probability plot
with N data points are calculated as

pi= cdf ™! (x) ®)
with
% = (i—1/2)/N. ©)

2.2. Choice of the number of degrees of freedom

Having described the functions involved in equations (7) and (8),
we can now make a probability plot based on a r-distribution. What is
still missing is a method for estimating the value for v. For the original
purpose of the ¢-distribution, v is the number of degrees of freedom of
the data set; most often two less than the number of data points.
When the #-distribution is used for robust statistical modeling, as in
this paper, the best choice of v is not obvious. Different practical
ranges have been suggested in the literature. Yuh & Hogg (1988)
suggested using v = 11 for lightly tailed distributions and v = 3 for
heavily tailed distributions. They also suggested how to decide
whether a distribution has a light or heavy tail.

In the case of a probability plot the situation is easier. We can make
different probability plots corresponding to different values of v. The
best probability plot corresponds most closely to a straight line.
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Figure 3

t-probability plot for the same data as shown in Fig. 1. A ¢-distribution with v =2.2
was found to be optimal to model this data set. The least-squares line shows that the
slope is much smaller than 1.0, showing overestimation of the standard uncertainty.
Some points with expected deviations of larger than 100 have been left out of the
plot to make the axes identical.
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Without having studied alternatives, we propose to choose a value of
v that maximizes the linear correlation coefficient of the probability
plot. Maximizing the correlation coefficient focuses on the mass of
data at the center of the distribution without ignoring deviations at
the tails.

Abrahams & Keve (1971) remark that the positions of the extreme
points in the probability plot are very sensitive to small changes in the
measured values. These points can therefore disturb the determina-
tion of the value of v at which the correlation coefficient is maxi-
mized. To avoid instability in the optimization, it would be possible to
use a downweighting procedure that takes the uncertainty in each
point into account in a quantitative way. In practice, however, for
large data sets a very simple but seemingly arbitrary cutoff of five
extreme data points at both ends gives sufficient stabilization.

3. Results and discussion

Fig. 3 gives the optimized t-probability plot for the same data set as
represented in the normal probability plot of Fig. 1. The slope of the
linear regression line is reduced from 1.33 for the normal probability
plot to 0.76 for the optimized ¢-probability plot, showing that stan-
dard uncertainties have not been underestimated but are over-
estimated for the bulk of the data points. The correlation coefficient
for the regression line increases from 0.92 to 0.998, showing a
dramatic improvement of the error model.

Over the course of our studies we have analyzed many data sets. A
few data sets required non-normal treatment of the standard uncer-
tainties as became obvious from studying their normal probability
plots. The description of the errors for these data sets could all be
very significantly improved by use of a #-distribution as modeled in an
optimized t-probability plot. Optimized values of v for these data sets
ranged between 2.3 and 5.6.

More surprisingly, we have found that the error model for almost
all of the data sets that could be adequately described using a normal
distribution could be significantly improved by using a ¢-distribution.
Such data sets, identified by normal probability plots with correla-
tions of their regression lines larger than 0.999, had significantly
better correlation coefficients in a z-distribution plot with optimized
values of v ranging between approximately 12 and 30.

Our results show that we can always use an optimized f-probability
plot where one would normally use a normal probability plot to
model the standard uncertainties of a data set. The normal prob-

ability plot forms the limiting case at v = 00 and does not need to be
handled as a special case. In all but one of the data sets we have
analyzed so far the optimization converged to v < 100, and signifi-
cantly better fits were obtained than at v = oo.

We have not studied how the optimization of v can be performed in
the case of smaller data sets. Our data sets generally contain many
thousands of data points. We expect that the same procedure can be
used for data sets as small as 100 points; with smaller data sets the
difference between probability plots will become smaller and a simple
binary decision about an appropriate value for v as made by Yuh &
Hogg (1988) may be more appropriate.

In the case where v can be determined directly from the data, this
may provide interesting information about the reliability of the
experimental methods used to obtain or process the data. We have
not studied this.

In cases when the reliability of the error model is of utmost
importance the use of tz-probability plots to model the standard
uncertainties can improve the reliability of the calculations.

4. Conclusions

We have proposed a way of studying the standard uncertainties for
large data sets that allows robust modeling of the data including any
outliers. The method consists of an analysis of the errors by means of
a probability plot using Student’s ¢-distribution to provide expected
deviations. We have shown that it is possible to determine the
parameter v of the s-distribution from the data themselves. We have
seen that this procedure always improves the error modeling, even
for data sets that, at first glance, would appear to behave in accor-
dance with a normal distribution.
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